Code and Text for Quiz 4.
Download CO2 emission per capita from Our World in Data into the directory for this post.
Assign the location of the file to the file_csv
. The data should be in the same directory as this file
emissions
file_csv <- here("_posts", "2021-03-01-reading-and-writing-data", "co-emissions-per-capita.csv")
emissions <- read_csv(file_csv)
emissions
emissions
# A tibble: 22,383 x 4
Entity Code Year `Per capita CO2 emissions`
<chr> <chr> <dbl> <dbl>
1 Afghanistan AFG 1949 0.00191
2 Afghanistan AFG 1950 0.0109
3 Afghanistan AFG 1951 0.0117
4 Afghanistan AFG 1952 0.0115
5 Afghanistan AFG 1953 0.0132
6 Afghanistan AFG 1954 0.0130
7 Afghanistan AFG 1955 0.0186
8 Afghanistan AFG 1956 0.0218
9 Afghanistan AFG 1957 0.0343
10 Afghanistan AFG 1958 0.0380
# … with 22,373 more rows
emissions
data THENclean_names
from the janitor package to make the names easier to work with assign the - output to tidy_emissions
show the first 10 rows of tidy_emissions
tidy_emissions <- emissions %>%
clean_names()
tidy_emissions
# A tibble: 22,383 x 4
entity code year per_capita_co2_emissions
<chr> <chr> <dbl> <dbl>
1 Afghanistan AFG 1949 0.00191
2 Afghanistan AFG 1950 0.0109
3 Afghanistan AFG 1951 0.0117
4 Afghanistan AFG 1952 0.0115
5 Afghanistan AFG 1953 0.0132
6 Afghanistan AFG 1954 0.0130
7 Afghanistan AFG 1955 0.0186
8 Afghanistan AFG 1956 0.0218
9 Afghanistan AFG 1957 0.0343
10 Afghanistan AFG 1958 0.0380
# … with 22,373 more rows
tidy_emissions
THEN use filter
to extract rows with year == 1996
THEN use skim
to calculate the descriptive statisticsName | Piped data |
Number of rows | 219 |
Number of columns | 4 |
_______________________ | |
Column type frequency: | |
character | 2 |
numeric | 2 |
________________________ | |
Group variables | None |
Variable type: character
skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
---|---|---|---|---|---|---|---|
entity | 0 | 1.00 | 4 | 32 | 0 | 219 | 0 |
code | 12 | 0.95 | 3 | 8 | 0 | 207 | 0 |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
year | 0 | 1 | 1996.00 | 0.00 | 1996.00 | 1996.00 | 1996.0 | 1996.00 | 1996.00 | ▁▁▇▁▁ |
per_capita_co2_emissions | 0 | 1 | 4.89 | 6.63 | 0.04 | 0.61 | 2.8 | 7.14 | 61.58 | ▇▁▁▁▁ |
tidy_emissions
then extract rows with year == 1996
and are missing a code# A tibble: 12 x 4
entity code year per_capita_co2_emissions
<chr> <chr> <dbl> <dbl>
1 Africa <NA> 1996 1.07
2 Asia <NA> 1996 2.39
3 Asia (excl. China & India) <NA> 1996 3.23
4 EU-27 <NA> 1996 8.77
5 EU-28 <NA> 1996 8.94
6 Europe <NA> 1996 8.90
7 Europe (excl. EU-27) <NA> 1996 9.04
8 Europe (excl. EU-28) <NA> 1996 8.78
9 North America <NA> 1996 14.3
10 North America (excl. USA) <NA> 1996 5.03
11 Oceania <NA> 1996 11.8
12 South America <NA> 1996 2.19
Entities that are not countries do not have country codes.
filter
to extract rows with year == 1996 and without missing codes THENselect
to drop the year
variable THENrename
to change the variable entity
to country
emissions_1996
emissions_1996 <- tidy_emissions %>%
filter(year == 1996, !is.na(code)) %>%
select(-year) %>%
rename(country = entity)
per_capita_co2_emissions
?emissions_1996
THENslice_max
to extract the 15 rows with the per_capita_co2_emissions
max_15_emitters
max_15_emitters <- emissions_1996 %>%
slice_max(per_capita_co2_emissions, n = 15)
per_capita_co2_emissions
?emissions_1996
THENslice_min
to extract the 15 rows with the lowest valuesmin_15_emitters
min_15_emitters <- emissions_1996 %>%
slice_min(per_capita_co2_emissions, n = 15)
bind_rows
to bind together the max_15_emitters
and min_15_emitters
max_min_15
max_min_15 <- bind_rows(max_15_emitters, min_15_emitters)
max_min_15
to 3 files formatsmax_min_15 %>% write_csv("max_min_15.csv") # comma-separated values
max_min_15 %>% write_tsv("max_min_15.tsv") # tab separated
max_min_15 %>% write_delim("max_min_15.psv", delim = "|") # pipe-separated
max_min_15_csv <- read_csv("max_min_15.csv") # comma-separated values
max_min_15_tsv <- read_tsv("max_min_15.tsv") # tab separated
max_min_15_psv <- read_delim("max_min_15.psv", delim = "|") # pipe-separated
setdiff
to check for any differences among max_min_15_csv
,max_min_15_tsv
, max_min_15_psv
setdiff(max_min_15_csv, max_min_15_tsv, max_min_15_psv)
# A tibble: 0 x 3
# … with 3 variables: country <chr>, code <chr>,
# per_capita_co2_emissions <dbl>
Are there any differences?
country
in max_min_15
for plotting and assign to max_min_15_plot_dataemissions_1996
THENmutate
to reorder country
according to per_capital_co2_emissions
max_min_15_plot_data <- max_min_15 %>%
mutate(country = reorder(country, per_capita_co2_emissions))
max_min_15_plot_data
ggplot(data = max_min_15_plot_data,
mapping = aes(x= per_capita_co2_emissions, y = country)) +
geom_col() +
labs(title = "The top 15 and bottom 15 per capita CO2 emissions", subtitle = "for 1996",
x = NULL,
y = NULL)
ggsave(filename = "preview.png", path = here("_posts", "2021-03-01-reading-and-writing-data"))
preview: preview.png