Code for Quiz 6, more dplyr and our first interactive chart using echarts4r.
library(tidyverse)
library(echarts4r) #install this package before using
library(hrbrthemes) #install this package before using
drug_cos.csv, health_cos.csv in to R and assign to the variables drug_cos and health_cos, respectivelydrug_cos <- read_csv("https://estanny.com/static/week6/drug_cos.csv")
health_cos <- read_csv("https://estanny.com/static/week6/health_cos.csv")
drug_cos %>% glimpse()
Rows: 104
Columns: 9
$ ticker <chr> "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS…
$ name <chr> "Zoetis Inc", "Zoetis Inc", "Zoetis Inc", "Zoe…
$ location <chr> "New Jersey; U.S.A", "New Jersey; U.S.A", "New…
$ ebitdamargin <dbl> 0.149, 0.217, 0.222, 0.238, 0.182, 0.335, 0.36…
$ grossmargin <dbl> 0.610, 0.640, 0.634, 0.641, 0.635, 0.659, 0.66…
$ netmargin <dbl> 0.058, 0.101, 0.111, 0.122, 0.071, 0.168, 0.16…
$ ros <dbl> 0.101, 0.171, 0.176, 0.195, 0.140, 0.286, 0.32…
$ roe <dbl> 0.069, 0.113, 0.612, 0.465, 0.285, 0.587, 0.48…
$ year <dbl> 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018…
health_cos %>% glimpse()
Rows: 464
Columns: 11
$ ticker <chr> "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS"…
$ name <chr> "Zoetis Inc", "Zoetis Inc", "Zoetis Inc", "Zoet…
$ revenue <dbl> 4233000000, 4336000000, 4561000000, 4785000000,…
$ gp <dbl> 2581000000, 2773000000, 2892000000, 3068000000,…
$ rnd <dbl> 427000000, 409000000, 399000000, 396000000, 364…
$ netincome <dbl> 245000000, 436000000, 504000000, 583000000, 339…
$ assets <dbl> 5711000000, 6262000000, 6558000000, 6588000000,…
$ liabilities <dbl> 1975000000, 2221000000, 5596000000, 5251000000,…
$ marketcap <dbl> NA, NA, 16345223371, 21572007994, 23860348635, …
$ year <dbl> 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018,…
$ industry <chr> "Drug Manufacturers - Specialty & Generic", "Dr…
names_drug <- drug_cos %>% names()
names_health <- health_cos %>% names()
intersect(names_drug, names_health)
[1] "ticker" "name" "year"
For drug_cos select (in this order): ticker, year, grossmargin
For health_cos select (in this order): ticker, year, revenue, gp, industry
health_subsetdrug_subset <- drug_cos %>%
select(ticker, year, grossmargin) %>%
filter(year == 2018)
health_subset <- health_cos %>%
select(ticker, year, revenue, gp, industry) %>%
filter(year == 2018)
drug_subset join with columns in health_subsetdrug_subset %>% left_join(health_subset)
# A tibble: 13 x 6
ticker year grossmargin revenue gp industry
<chr> <dbl> <dbl> <dbl> <dbl> <chr>
1 ZTS 2018 0.672 5.82e 9 3.91e 9 Drug Manufacturers - …
2 PRGO 2018 0.387 4.73e 9 1.83e 9 Drug Manufacturers - …
3 PFE 2018 0.79 5.36e10 4.24e10 Drug Manufacturers - …
4 MYL 2018 0.35 1.14e10 4.00e 9 Drug Manufacturers - …
5 MRK 2018 0.681 4.23e10 2.88e10 Drug Manufacturers - …
6 LLY 2018 0.738 2.46e10 1.81e10 Drug Manufacturers - …
7 JNJ 2018 0.668 8.16e10 5.45e10 Drug Manufacturers - …
8 GILD 2018 0.781 2.21e10 1.73e10 Drug Manufacturers - …
9 BMY 2018 0.71 2.26e10 1.60e10 Drug Manufacturers - …
10 BIIB 2018 0.865 1.35e10 1.16e10 Drug Manufacturers - …
11 AMGN 2018 0.827 2.37e10 1.96e10 Drug Manufacturers - …
12 AGN 2018 0.861 1.58e10 1.36e10 Drug Manufacturers - …
13 ABBV 2018 0.764 3.28e10 2.50e10 Drug Manufacturers - …
drug_cosdrug_cosdrug_cos_subsetdrug_cos_subset <- drug_cos %>%
filter(ticker == "BIIB")
drug_cos_subsetdrug_cos_subset
# A tibble: 8 x 9
ticker name location ebitdamargin grossmargin netmargin ros roe
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 BIIB Biog… Massach… 0.404 0.908 0.245 0.333 0.204
2 BIIB Biog… Massach… 0.402 0.901 0.25 0.335 0.211
3 BIIB Biog… Massach… 0.432 0.876 0.269 0.355 0.233
4 BIIB Biog… Massach… 0.475 0.879 0.302 0.404 0.294
5 BIIB Biog… Massach… 0.493 0.885 0.33 0.437 0.321
6 BIIB Biog… Massach… 0.491 0.871 0.323 0.431 0.322
7 BIIB Biog… Massach… 0.495 0.867 0.207 0.407 0.209
8 BIIB Biog… Massach… 0.511 0.865 0.329 0.435 0.334
# … with 1 more variable: year <dbl>
Use left_join to combine the rows and columns of drug_cos_subset with the columns of health_cos
Assign the output to combo_df
combo_df <- drug_cos_subset %>%
left_join(health_cos)
combo_df
# A tibble: 8 x 17
ticker name location ebitdamargin grossmargin netmargin ros roe
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 BIIB Biog… Massach… 0.404 0.908 0.245 0.333 0.204
2 BIIB Biog… Massach… 0.402 0.901 0.25 0.335 0.211
3 BIIB Biog… Massach… 0.432 0.876 0.269 0.355 0.233
4 BIIB Biog… Massach… 0.475 0.879 0.302 0.404 0.294
5 BIIB Biog… Massach… 0.493 0.885 0.33 0.437 0.321
6 BIIB Biog… Massach… 0.491 0.871 0.323 0.431 0.322
7 BIIB Biog… Massach… 0.495 0.867 0.207 0.407 0.209
8 BIIB Biog… Massach… 0.511 0.865 0.329 0.435 0.334
# … with 9 more variables: year <dbl>, revenue <dbl>, gp <dbl>,
# rnd <dbl>, netincome <dbl>, assets <dbl>, liabilities <dbl>,
# marketcap <dbl>, industry <chr>
ticker, name, location and industry are the same for all the observationsco_nameco_name <- combo_df %>%
distinct(name) %>%
pull()
co_locationco_location <- combo_df %>%
distinct(location) %>%
pull()
co_industry groupco_industry <- combo_df %>%
distinct(industry) %>%
pull()
Put the r inline commands used in the blanks below. When you knit the document the results of the commands will be displayed in your text.
The company Biogen Inc is located in Massachusetts; U.S.A and is a member of the Drug Manufacturers - General industry group.
Start with comb_df
Select variables (in this order): year, grossmargin, netmargin, revenue, gp, netincome
Assign the output to combo_df_subset
combo_df_subset <- combo_df %>%
select(year, grossmargin, netmargin,
revenue, gp, netincome)
combo_df_subsetcombo_df_subset
# A tibble: 8 x 6
year grossmargin netmargin revenue gp netincome
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2011 0.908 0.245 5048634000 4581854000 1234428000
2 2012 0.901 0.25 5516461000 4970967000 1380033000
3 2013 0.876 0.269 6932200000 6074500000 1862300000
4 2014 0.879 0.302 9703300000 8532300000 2934800000
5 2015 0.885 0.33 10763800000 9523400000 3547000000
6 2016 0.871 0.323 11448800000 9970100000 3702800000
7 2017 0.867 0.207 12273900000 10643900000 2539100000
8 2018 0.865 0.329 13452900000 11636600000 4430700000
Create the variable grossmargin_check to compare with the variable grossmargin. They should be equal.
grossmargin_check = gp / revenueCreate the variable close_enough to check that the absolute value of the difference between grossmargin_check and grossmargin is less than 0.001
combo_df_subset %>%
mutate(grossmargin_check = gp / revenue,
close_enough = abs(grossmargin_check - grossmargin) < 0.001)
# A tibble: 8 x 8
year grossmargin netmargin revenue gp netincome
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2011 0.908 0.245 5.05e 9 4.58e 9 1.23e9
2 2012 0.901 0.25 5.52e 9 4.97e 9 1.38e9
3 2013 0.876 0.269 6.93e 9 6.07e 9 1.86e9
4 2014 0.879 0.302 9.70e 9 8.53e 9 2.93e9
5 2015 0.885 0.33 1.08e10 9.52e 9 3.55e9
6 2016 0.871 0.323 1.14e10 9.97e 9 3.70e9
7 2017 0.867 0.207 1.23e10 1.06e10 2.54e9
8 2018 0.865 0.329 1.35e10 1.16e10 4.43e9
# … with 2 more variables: grossmargin_check <dbl>,
# close_enough <lgl>
Create the variable netmargin_check to compare with the variable netmargin. They should be equal.
Create the variable close_enough to check that the absolute value of the difference between netmargin_check and netmargin is less than 0.001
combo_df_subset %>%
mutate(netmargin_check = netincome / revenue,
close_enough = abs(netmargin_check - netmargin) < 0.001)
# A tibble: 8 x 8
year grossmargin netmargin revenue gp netincome
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2011 0.908 0.245 5.05e 9 4.58e 9 1.23e9
2 2012 0.901 0.25 5.52e 9 4.97e 9 1.38e9
3 2013 0.876 0.269 6.93e 9 6.07e 9 1.86e9
4 2014 0.879 0.302 9.70e 9 8.53e 9 2.93e9
5 2015 0.885 0.33 1.08e10 9.52e 9 3.55e9
6 2016 0.871 0.323 1.14e10 9.97e 9 3.70e9
7 2017 0.867 0.207 1.23e10 1.06e10 2.54e9
8 2018 0.865 0.329 1.35e10 1.16e10 4.43e9
# … with 2 more variables: netmargin_check <dbl>, close_enough <lgl>
Fill in the blanks
Put the command you are in the Rchunks in the Rmd file for this quiz
Use the health_cos data
For each industry calculate
health_cos %>%
group_by(industry) %>%
summarize(mean_grossmargin_percent = mean(gp / revenue) * 100,
median_grossmargin_percent = median(gp / revenue) * 100,
min_grossmargin_percent = min(gp / revenue) * 100,
max_grossmargin_percent = max(gp / revenue) * 100)
# A tibble: 9 x 5
industry mean_grossmargi… median_grossmar… min_grossmargin…
* <chr> <dbl> <dbl> <dbl>
1 Biotech… 92.5 92.7 81.7
2 Diagnos… 50.5 52.7 28.0
3 Drug Ma… 75.4 76.4 36.8
4 Drug Ma… 47.9 42.6 34.3
5 Healthc… 20.5 19.6 10.0
6 Medical… 55.9 37.4 28.1
7 Medical… 70.8 72.0 53.2
8 Medical… 10.4 5.38 2.49
9 Medical… 53.9 52.8 40.5
# … with 1 more variable: max_grossmargin_percent <dbl>
Fill in the blanks
Use the health_cos data
Extract observations for the ticker ZTS from health_cos and assign to the variable health_cos_subset
health_cos_subset <- health_cos %>%
filter(ticker == "ZTS")
health_cos_subsethealth_cos_subset
# A tibble: 8 x 11
ticker name revenue gp rnd netincome assets liabilities
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 ZTS Zoet… 4.23e9 2.58e9 4.27e8 2.45e8 5.71e 9 1975000000
2 ZTS Zoet… 4.34e9 2.77e9 4.09e8 4.36e8 6.26e 9 2221000000
3 ZTS Zoet… 4.56e9 2.89e9 3.99e8 5.04e8 6.56e 9 5596000000
4 ZTS Zoet… 4.78e9 3.07e9 3.96e8 5.83e8 6.59e 9 5251000000
5 ZTS Zoet… 4.76e9 3.03e9 3.64e8 3.39e8 7.91e 9 6822000000
6 ZTS Zoet… 4.89e9 3.22e9 3.76e8 8.21e8 7.65e 9 6150000000
7 ZTS Zoet… 5.31e9 3.53e9 3.82e8 8.64e8 8.59e 9 6800000000
8 ZTS Zoet… 5.82e9 3.91e9 4.32e8 1.43e9 1.08e10 8592000000
# … with 3 more variables: marketcap <dbl>, year <dbl>,
# industry <chr>
?distinct. Go to the help pane to see what distinct does?pull. Go to the help pane to see what pull doesRun the code below
health_cos_subset %>%
distinct(name) %>%
pull(name)
[1] "Zoetis Inc"
co_nameco_name <- health_cos_subset %>%
distinct(name) %>%
pull(name)
You can take output from your code and include it in your text.
In the following chuck
co_industryco_industry <- health_cos_subset %>%
distinct(industry) %>%
pull()
This is outside the R chunk. Put the r inline commands used in the blanks below. When you knit the document the results of the commands will be displayed in your text.
The company Zoetis Inc is a member of the Drug Manufacturers - Specialty & Generic group.
dfdf %>% glimpse()
Rows: 9
Columns: 2
$ industry <chr> "Biotechnology", "Diagnostics & Research", "Dru…
$ med_rnd_rev <dbl> 0.48317287, 0.05620271, 0.17451442, 0.06851879,…
ggplot to initialize the chartdfindustry is mapped to the x-axis
med_rnd_revmed_rnd_rev is mapped to the y-axisgeom_colscale_y_continuous to label the y-axis with percentcoord_flip() to flip the coordinateslabs to add title, subtitle and remove x and y-axestheme_ipsum() from the hrbrthemes package to improve the themeggplot(data = df,
mapping = aes(
x = reorder(industry, med_rnd_rev ),
y = med_rnd_rev)) +
geom_col() +
scale_y_continuous(labels = scales::percent) +
coord_flip() +
labs(
title = "Median R&D Expenditures",
subtitle = "by industry as a percent of revenue from 2011 to 2018",
x = NULL, y = NULL) +
theme_ipsum()

ggsave(filename = "preview.png",
path = here::here("_posts", "2021-03-16-joining-data"))
dfarrange to reorder med_rnd_reve_charts to initialize a chart
industry is mapped to the x-axise_bar with the values of med_rnd_reve_flip_coords() to flip the coordinatese_title to add the title and the subtitlee_legend to remove the legendse_x_axis to change format of labels on x-axis to percente_y_axis to remove labels on y-axis-e_theme to change the theme. Find more themes heredf %>%
arrange(med_rnd_rev) %>%
e_charts(
x = industry) %>%
e_bar(serie = med_rnd_rev,
name = "median") %>%
e_flip_coords() %>%
e_tooltip() %>%
e_title(
text = "Median Industry R&D Expenditures",
subtext = "by industry as a percent of revenue from 2011 to 2018",
left = "center") %>%
e_legend(FALSE) %>%
e_x_axis(
formatter = e_axis_formatter("percent", digits = 0)) %>%
e_y_axis(show = FALSE) %>%
e_theme("wonderland")