Joining Data

Code for Quiz 6, more dplyr and our first interactive chart using echarts4r.

Steps 1-6

  1. Load the R packages we will use.
library(tidyverse)
library(echarts4r) #install this package before using
library(hrbrthemes) #install this package before using
  1. Read the data in the files, drug_cos.csv, health_cos.csv in to R and assign to the variables drug_cos and health_cos, respectively
drug_cos  <- read_csv("https://estanny.com/static/week6/drug_cos.csv")
health_cos  <- read_csv("https://estanny.com/static/week6/health_cos.csv")
  1. Use glimpse to get a glimpse of the data
drug_cos %>% glimpse()
Rows: 104
Columns: 9
$ ticker       <chr> "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS…
$ name         <chr> "Zoetis Inc", "Zoetis Inc", "Zoetis Inc", "Zoe…
$ location     <chr> "New Jersey; U.S.A", "New Jersey; U.S.A", "New…
$ ebitdamargin <dbl> 0.149, 0.217, 0.222, 0.238, 0.182, 0.335, 0.36…
$ grossmargin  <dbl> 0.610, 0.640, 0.634, 0.641, 0.635, 0.659, 0.66…
$ netmargin    <dbl> 0.058, 0.101, 0.111, 0.122, 0.071, 0.168, 0.16…
$ ros          <dbl> 0.101, 0.171, 0.176, 0.195, 0.140, 0.286, 0.32…
$ roe          <dbl> 0.069, 0.113, 0.612, 0.465, 0.285, 0.587, 0.48…
$ year         <dbl> 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018…
health_cos %>% glimpse()
Rows: 464
Columns: 11
$ ticker      <chr> "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS"…
$ name        <chr> "Zoetis Inc", "Zoetis Inc", "Zoetis Inc", "Zoet…
$ revenue     <dbl> 4233000000, 4336000000, 4561000000, 4785000000,…
$ gp          <dbl> 2581000000, 2773000000, 2892000000, 3068000000,…
$ rnd         <dbl> 427000000, 409000000, 399000000, 396000000, 364…
$ netincome   <dbl> 245000000, 436000000, 504000000, 583000000, 339…
$ assets      <dbl> 5711000000, 6262000000, 6558000000, 6588000000,…
$ liabilities <dbl> 1975000000, 2221000000, 5596000000, 5251000000,…
$ marketcap   <dbl> NA, NA, 16345223371, 21572007994, 23860348635, …
$ year        <dbl> 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018,…
$ industry    <chr> "Drug Manufacturers - Specialty & Generic", "Dr…
  1. Which variables are the same in both data sets
names_drug  <- drug_cos  %>%  names() 
names_health  <- health_cos  %>%  names() 
intersect(names_drug, names_health)
[1] "ticker" "name"   "year"  
  1. Select subset of variables to work with
drug_subset  <- drug_cos  %>% 
  select(ticker, year, grossmargin)  %>% 
  filter(year == 2018)

health_subset  <- health_cos  %>%
  select(ticker, year, revenue, gp, industry)  %>% 
  filter(year == 2018)
  1. Keep all the rows and columns drug_subset join with columns in health_subset
drug_subset  %>% left_join(health_subset)
# A tibble: 13 x 6
   ticker  year grossmargin   revenue        gp industry              
   <chr>  <dbl>       <dbl>     <dbl>     <dbl> <chr>                 
 1 ZTS     2018       0.672   5.82e 9   3.91e 9 Drug Manufacturers - …
 2 PRGO    2018       0.387   4.73e 9   1.83e 9 Drug Manufacturers - …
 3 PFE     2018       0.79    5.36e10   4.24e10 Drug Manufacturers - …
 4 MYL     2018       0.35    1.14e10   4.00e 9 Drug Manufacturers - …
 5 MRK     2018       0.681   4.23e10   2.88e10 Drug Manufacturers - …
 6 LLY     2018       0.738   2.46e10   1.81e10 Drug Manufacturers - …
 7 JNJ     2018       0.668   8.16e10   5.45e10 Drug Manufacturers - …
 8 GILD    2018       0.781   2.21e10   1.73e10 Drug Manufacturers - …
 9 BMY     2018       0.71    2.26e10   1.60e10 Drug Manufacturers - …
10 BIIB    2018       0.865   1.35e10   1.16e10 Drug Manufacturers - …
11 AMGN    2018       0.827   2.37e10   1.96e10 Drug Manufacturers - …
12 AGN     2018       0.861   1.58e10   1.36e10 Drug Manufacturers - …
13 ABBV    2018       0.764   3.28e10   2.50e10 Drug Manufacturers - …

Question: join_ticker

drug_cos_subset  <- drug_cos  %>% 
  filter(ticker == "BIIB")

drug_cos_subset
# A tibble: 8 x 9
  ticker name  location ebitdamargin grossmargin netmargin   ros   roe
  <chr>  <chr> <chr>           <dbl>       <dbl>     <dbl> <dbl> <dbl>
1 BIIB   Biog… Massach…        0.404       0.908     0.245 0.333 0.204
2 BIIB   Biog… Massach…        0.402       0.901     0.25  0.335 0.211
3 BIIB   Biog… Massach…        0.432       0.876     0.269 0.355 0.233
4 BIIB   Biog… Massach…        0.475       0.879     0.302 0.404 0.294
5 BIIB   Biog… Massach…        0.493       0.885     0.33  0.437 0.321
6 BIIB   Biog… Massach…        0.491       0.871     0.323 0.431 0.322
7 BIIB   Biog… Massach…        0.495       0.867     0.207 0.407 0.209
8 BIIB   Biog… Massach…        0.511       0.865     0.329 0.435 0.334
# … with 1 more variable: year <dbl>
combo_df <- drug_cos_subset  %>% 
  left_join(health_cos)
combo_df
# A tibble: 8 x 17
  ticker name  location ebitdamargin grossmargin netmargin   ros   roe
  <chr>  <chr> <chr>           <dbl>       <dbl>     <dbl> <dbl> <dbl>
1 BIIB   Biog… Massach…        0.404       0.908     0.245 0.333 0.204
2 BIIB   Biog… Massach…        0.402       0.901     0.25  0.335 0.211
3 BIIB   Biog… Massach…        0.432       0.876     0.269 0.355 0.233
4 BIIB   Biog… Massach…        0.475       0.879     0.302 0.404 0.294
5 BIIB   Biog… Massach…        0.493       0.885     0.33  0.437 0.321
6 BIIB   Biog… Massach…        0.491       0.871     0.323 0.431 0.322
7 BIIB   Biog… Massach…        0.495       0.867     0.207 0.407 0.209
8 BIIB   Biog… Massach…        0.511       0.865     0.329 0.435 0.334
# … with 9 more variables: year <dbl>, revenue <dbl>, gp <dbl>,
#   rnd <dbl>, netincome <dbl>, assets <dbl>, liabilities <dbl>,
#   marketcap <dbl>, industry <chr>

co_name <- combo_df  %>% 
  distinct(name) %>% 
  pull()
co_location  <- combo_df  %>% 
  distinct(location)  %>% 
  pull() 
co_industry  <- combo_df  %>% 
  distinct(industry)  %>% 
  pull() 

Put the r inline commands used in the blanks below. When you knit the document the results of the commands will be displayed in your text.

The company Biogen Inc is located in Massachusetts; U.S.A and is a member of the Drug Manufacturers - General industry group.


combo_df_subset  <- combo_df  %>% 
  select(year, grossmargin, netmargin, 
  revenue, gp, netincome)

combo_df_subset 
# A tibble: 8 x 6
   year grossmargin netmargin     revenue          gp  netincome
  <dbl>       <dbl>     <dbl>       <dbl>       <dbl>      <dbl>
1  2011       0.908     0.245  5048634000  4581854000 1234428000
2  2012       0.901     0.25   5516461000  4970967000 1380033000
3  2013       0.876     0.269  6932200000  6074500000 1862300000
4  2014       0.879     0.302  9703300000  8532300000 2934800000
5  2015       0.885     0.33  10763800000  9523400000 3547000000
6  2016       0.871     0.323 11448800000  9970100000 3702800000
7  2017       0.867     0.207 12273900000 10643900000 2539100000
8  2018       0.865     0.329 13452900000 11636600000 4430700000
combo_df_subset  %>% 
  mutate(grossmargin_check = gp / revenue,
  close_enough = abs(grossmargin_check - grossmargin) < 0.001)
# A tibble: 8 x 8
   year grossmargin netmargin revenue      gp netincome
  <dbl>       <dbl>     <dbl>   <dbl>   <dbl>     <dbl>
1  2011       0.908     0.245 5.05e 9 4.58e 9    1.23e9
2  2012       0.901     0.25  5.52e 9 4.97e 9    1.38e9
3  2013       0.876     0.269 6.93e 9 6.07e 9    1.86e9
4  2014       0.879     0.302 9.70e 9 8.53e 9    2.93e9
5  2015       0.885     0.33  1.08e10 9.52e 9    3.55e9
6  2016       0.871     0.323 1.14e10 9.97e 9    3.70e9
7  2017       0.867     0.207 1.23e10 1.06e10    2.54e9
8  2018       0.865     0.329 1.35e10 1.16e10    4.43e9
# … with 2 more variables: grossmargin_check <dbl>,
#   close_enough <lgl>
combo_df_subset  %>% 
  mutate(netmargin_check = netincome / revenue,
  close_enough = abs(netmargin_check - netmargin) < 0.001)
# A tibble: 8 x 8
   year grossmargin netmargin revenue      gp netincome
  <dbl>       <dbl>     <dbl>   <dbl>   <dbl>     <dbl>
1  2011       0.908     0.245 5.05e 9 4.58e 9    1.23e9
2  2012       0.901     0.25  5.52e 9 4.97e 9    1.38e9
3  2013       0.876     0.269 6.93e 9 6.07e 9    1.86e9
4  2014       0.879     0.302 9.70e 9 8.53e 9    2.93e9
5  2015       0.885     0.33  1.08e10 9.52e 9    3.55e9
6  2016       0.871     0.323 1.14e10 9.97e 9    3.70e9
7  2017       0.867     0.207 1.23e10 1.06e10    2.54e9
8  2018       0.865     0.329 1.35e10 1.16e10    4.43e9
# … with 2 more variables: netmargin_check <dbl>, close_enough <lgl>

Question: summarize_industry

health_cos  %>% 
  group_by(industry)  %>% 
  summarize(mean_grossmargin_percent = mean(gp / revenue) * 100,
            median_grossmargin_percent = median(gp / revenue) * 100,
            min_grossmargin_percent = min(gp / revenue) * 100,
            max_grossmargin_percent = max(gp / revenue) * 100)
# A tibble: 9 x 5
  industry mean_grossmargi… median_grossmar… min_grossmargin…
* <chr>               <dbl>            <dbl>            <dbl>
1 Biotech…             92.5            92.7             81.7 
2 Diagnos…             50.5            52.7             28.0 
3 Drug Ma…             75.4            76.4             36.8 
4 Drug Ma…             47.9            42.6             34.3 
5 Healthc…             20.5            19.6             10.0 
6 Medical…             55.9            37.4             28.1 
7 Medical…             70.8            72.0             53.2 
8 Medical…             10.4             5.38             2.49
9 Medical…             53.9            52.8             40.5 
# … with 1 more variable: max_grossmargin_percent <dbl>

Question: inline_ticker

health_cos_subset  <- health_cos  %>% 
  filter(ticker == "ZTS")
health_cos_subset
# A tibble: 8 x 11
  ticker name  revenue     gp    rnd netincome  assets liabilities
  <chr>  <chr>   <dbl>  <dbl>  <dbl>     <dbl>   <dbl>       <dbl>
1 ZTS    Zoet…  4.23e9 2.58e9 4.27e8    2.45e8 5.71e 9  1975000000
2 ZTS    Zoet…  4.34e9 2.77e9 4.09e8    4.36e8 6.26e 9  2221000000
3 ZTS    Zoet…  4.56e9 2.89e9 3.99e8    5.04e8 6.56e 9  5596000000
4 ZTS    Zoet…  4.78e9 3.07e9 3.96e8    5.83e8 6.59e 9  5251000000
5 ZTS    Zoet…  4.76e9 3.03e9 3.64e8    3.39e8 7.91e 9  6822000000
6 ZTS    Zoet…  4.89e9 3.22e9 3.76e8    8.21e8 7.65e 9  6150000000
7 ZTS    Zoet…  5.31e9 3.53e9 3.82e8    8.64e8 8.59e 9  6800000000
8 ZTS    Zoet…  5.82e9 3.91e9 4.32e8    1.43e9 1.08e10  8592000000
# … with 3 more variables: marketcap <dbl>, year <dbl>,
#   industry <chr>

Run the code below

health_cos_subset  %>% 
  distinct(name) %>%  
  pull(name)
[1] "Zoetis Inc"
co_name <- health_cos_subset  %>% 
  distinct(name) %>% 
  pull(name)

You can take output from your code and include it in your text.

In the following chuck

co_industry  <- health_cos_subset  %>% 
  distinct(industry) %>% 
  pull()

This is outside the R chunk. Put the r inline commands used in the blanks below. When you knit the document the results of the commands will be displayed in your text.

The company Zoetis Inc is a member of the Drug Manufacturers - Specialty & Generic group.


Steps 7-11

  1. Prepare the data for the plots
df <- health_cos  %>% 
  group_by(industry)  %>%
  summarize(med_rnd_rev = median(rnd/revenue))  
  1. Use glimpse to glimpse the data for the plots
df  %>% glimpse() 
Rows: 9
Columns: 2
$ industry    <chr> "Biotechnology", "Diagnostics & Research", "Dru…
$ med_rnd_rev <dbl> 0.48317287, 0.05620271, 0.17451442, 0.06851879,…
  1. Create a static bar chart
ggplot(data = df, 
       mapping = aes(
         x = reorder(industry, med_rnd_rev ),
         y = med_rnd_rev)) +
  geom_col() + 
  scale_y_continuous(labels = scales::percent) +
  coord_flip() +
  labs(
    title = "Median R&D Expenditures",
    subtitle = "by industry as a percent of revenue from 2011 to 2018",
    x = NULL, y = NULL) +
  theme_ipsum()

  1. Save the previous plot to preview.png and add to the yaml chunk at the top
ggsave(filename = "preview.png", 
       path = here::here("_posts", "2021-03-16-joining-data"))
  1. Create an interactive bar chart using the package echarts4r
df  %>% 
  arrange(med_rnd_rev)  %>%
  e_charts(
    x = industry)  %>% 
  e_bar(serie = med_rnd_rev, 
    name = "median")  %>%
  e_flip_coords()  %>% 
  e_tooltip()  %>% 
  e_title(
    text = "Median Industry R&D Expenditures", 
    subtext = "by industry as a percent of revenue from 2011 to 2018",
    left = "center") %>% 
  e_legend(FALSE) %>% 
  e_x_axis(
    formatter = e_axis_formatter("percent", digits = 0))  %>%
  e_y_axis(show = FALSE)  %>% 
  e_theme("wonderland")